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RUNNING TITLE:  The coral metabolome links to symbiont communities 

SUMMARY:  

Microbial symbiotic partners, such as those associated with scleractinian corals, mediate 

biochemical transformations that influence host performance and survival. While evidence 

suggests microbial community composition partly accounts for differences in coral physiology, 

how these symbionts affect metabolic pathways remains underexplored. We aimed to assess 

functional implications of variation among coral-associated microbial partners in hospite. To this 

end, we characterized and compared metabolomic profiles and microbial community 

composition from nine reef-building coral species. These data demonstrate metabolite profiles 

and microbial communities are species-specific and are correlated to one another. Using Porites 

spp. as a case study, we present evidence that the relative abundance of different sub-clades of 

Symbiodinium and bacterial/archaeal families are linked to positive and negative metabolomic 

signatures. Our data suggests that while some microbial partners benefit the union, others are 

more opportunistic with potential detriment to the host. Consequently, coral partner choice likely 

influences cellular metabolic activities and, therefore, holobiont nutrition. 
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INTRODUCTION 

 Microbial symbiotic partners mediate biochemical transformations that contribute to host 

performance, altering individual survival and ecosystem function (McFall-Ngai et al., 2013). 

Reef-building corals partner with a diverse assemblage of bacterial, archaeal and eukaryotic 

organisms (i.e., microbiome) that comprise the coral holobiont and cycle organic molecules 

necessary for life in oligotrophic waters (Rohwer et al., 2002; Gates and Ainsworth 2011). Coral 

associated micro-algae from the dinoflagellate genus Symbiodinium help to sustain large organic 

biomasses on reefs through carbon production (Muscatine and Porter 1977), while coral-

associated bacterial and archaeal assemblages participate in sulfur (Raina et al., 2009) and 

nitrogen cycling (Rädecker et al., 2015). The breakdown of these symbiotic relationships (e.g., 

bleaching and disease), leads to mortality and drastic changes in reef structure (Hughes et al., 

2003). Because not all symbiotic partners contribute equally to holobiont performance (Stat et 

al., 2008), investigating how different microbes influence coral physiology is essential to 

understanding the resilience and resistance of reef ecosystems in a changing ocean environment. 

To this end, we sought to link microbial community composition to holobiont biochemical 

profiles using deep sequencing of marker genes and a holistic metabolomic approach.    

 

RESULTS AND DISCUSSION 

 We sampled the microbial community and metabolite composition from nine coral 

species within four genera from a single fringing reef in Mo‘orea, French Polynesia (Figure S1; 

supporting information provides full experimental methodology). We characterized both 

Symbiodinium and bacterial/archaeal communities from each sample by sequencing the internal 

transcribed spacer 2 (ITS2) and the V3-V4 region of the 16s ribosomal RNA gene, respectively. 
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Using custom bioinformatics pipelines (FileS1 and FileS4), our analysis identified 80 

Symbiodinium operational taxonomic units grouped to 97% similarity (OTUs; assigned to clades 

A, C, D and G) and 618 bacterial/archaeal families through database classification (Figure S2; 

Table S1); the majority of these families belong within the gamma-, alpha- and delta-

proteobacteria but with representatives spread across 130 classes (Figure S2B). In parallel, we 

assessed coral metabolite profiles from crude extracts using proton-nuclear magnetic resonance 

spectroscopy (
1
H-NMR) metabolomic techniques (Sogin et al., 2014). Our spectral binning 

approach identified 197 peaks from aligned NMR profiles, which were used in subsequent 

downstream analyses. We unambiguously identified 8 compounds through database and 

literature matching, and assigned the remaining signals to either carbohydrate, lipid, or aromatic 

metabolite classes based on spectral identity (Figure S3; Bross-Walch, et al, 2005).  

 Our sequencing and metabolomic profiling data allowed us to test for linkages between 

microbial community assemblages and metabolite composition. This novel in hospite approach 

provides direction for future efforts seeking to identify specific roles of uncultured complex 

mixtures of microbial communities in reef corals. Multivariate analysis of Symbiodinium and 

coral metabolite profiles grouped samples into coral species- and genera-specific clusters (Figure 

1A and 1C) while bacteria/archaea communities only sometimes separated by genera (Figure 

1B). These results confirm previous studies showing that closely related host taxa share similar 

symbiotic communities and biochemical profiles (Putnam et al., 2012; Rohwer et al.,  2002; 

Sogin et al., 2014). Using a procrustes rotation to statistically compare the multidimensional 

structure of each dataset, our study demonstrates congruency among coral Symbiodinium and 

bacterial communities with metabolomic profiles (Figure 1D, Figure 1E). Furthermore, these 

results are robust to our choice of microbial phylogenetic binning. ANOSIM tests of 

Page 4 of 33

Wiley-Blackwell and Society for Applied Microbiology

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le

 5 

bacterial/archaeal community structure differences among coral species (R=0.75, p=0.001) and 

Procrustes correspondence tests of multivariate congruency with metabolite composition 

(p=0.001) were consistent when bacterial/archaeal OTUs were constructed using a 97% sequence 

similarity criterion; we use family-level classifications herein as a conservative approach.  

 Corals host a diverse assemblage of symbiotic partners; therefore finding correlative 

relationships between metabolites and microbial members across multiple host species is not 

surprising. Considering different corals exhibit broadly different physiologies (e.g., Loya et al., 

2001), it is essential to isolate the influence of the host to identify the effect of microbial 

communities on holobiont metabolomic signatures. To this end, we applied a hierarchical 

clustering approach to the metabolite dataset and identified samples originating from Porites 

lobata and P. rus colonies as having similar metabolite profiles (Figure 1C, Figure 1H) but 

different symbiont communities (Figure 1F, Figure 1G). Repeated Procrustes rotation analyses 

using only the P. lobata and P. rus samples still detected congruency between microbial 

communities and metabolite composition (Figure 1H, Figure 1I). This suggests different 

microbial partners may play similar roles in holobiont nutrition and provide functional 

redundancy in the system, such that metabolic processes are retained (e.g., Yin et al., 2000). 

While our approach advances the field by providing a framework to investigate the roles of the 

symbiotic partners in a complex milieu, further metagenomic approaches will provide a detailed 

comparison between the functions of different microbes (Dinsdale et al., 2008). Our findings 

lend weight to growing information on the metabolic role of mixed microbial communities, with 

various Symbiodinium types characterized by different chemical profiles (Klueter et al., 2015) 

and shifts in associated bacterial/archaeal communities altering the metabolic potential of the 

holobiont (Wegley et al., 2007).  
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 Using this reduced dataset containing only Porites sp. with similar metabolite profiles, 

we also calculated spearman rank correlation coefficients between the abundance of individual 

NMR peaks and independently the relative abundances of both Symbiodinium and 

bacterial/archaeal symbionts. We observed significant correlations between coral-associated 

symbionts and metabolites (multiple comparisons corrected p < 0.05), further supporting the 

hypothesis that microbial communities alter holobiont metabolomic profiles (Figure 2). 

Hierarchical clustering on correlation patterns group microbial partners based on their 

association patterns with metabolite peaks, highlighting taxa that are positively and negatively 

associated with small compounds. While additional efforts are required to determine if these 

associations are benefiting or harming the holobiont, we can interpret these relationships in 

context of the current physiological understanding of coral microbial communities. Therefore,  

using these data, we explore the hypothesis that some symbionts positively contribute to, while 

others may  act in an opportunistic or parasitic manner, with respect to holobiont nutrition 

(Lesser et al., 2013).  

 Clade C Symbiodinium fixes and translocates more organic carbon than other clades (Stat 

et al., 2008); our observation that OTU75 assigned to sub-clade C15 correlates positively with 

carbohydrates but negatively with lipids suggests this sub-type produces metabolically active 

carbohydrates not used in lipid metabolism (Figure 2A). Our analysis delineates variation in 

metabolite correlational patterns between closely related 97% Symbiodinium clusters (i.e., C15-

OTU75 and C15-OTU89), indicating even strain level variants are metabolically distinct. 

Closely related Symbiodinium types differentially influence host-bleaching susceptibility 

(Sampayo et al., 2008), variation in gene expression profiles (Parkinson et al., 2016) and 
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holobiont metabolite composition. These findings may help to reconcile performance contrasts in 

corals, for example, variation in bleaching among individuals (Loya et al, 2001). 

 From our correlation analyses, we also identify clusters of bacterial/archaeal families that 

are either positively or negatively associated with NMR-metabolite peaks (Figure 2B). We 

observe positive correlations between several unclassified cyanobacteria families and metabolite 

signals originating from nitrogen containing branched-chain amino acids and acetate, supporting 

the hypothesis that cyanobacteria produce nitrogen compounds to support coral nutrition (Lesser 

et al., 2004; Lesser et al., 2007). We also observe positive associations with Vibrioaceae, a 

bacteria family commonly associated with elevated temperatures and coral stress, and a broad 

array of metabolites classes providing additional evidence that vibrio sp. strongly influences 

holobiont metabolism (Thurber et al. 2009). Additionally, we observe  6 gamma-proteobacteria 

families are negatively associated with branched-chain amino acids and acetate, including 

Oceanospirillaceae and Colwelliaceae, families associated with coral disease (Thompson et al., 

2006) and opportunistic colonization following disturbance (Glasl et al., 2016). These data may 

suggest bacteria families are producing or consuming metabolites, thereby altering Porites 

holobiont metabolism. Considering shifts in coral reef bacteria/archaea communities can alter 

ecosystem metabolic potential (Haas et al., 2016), our approach can support assessment efforts 

of reef health by determining metabolic activities of key coral-associated bacterial groups. 

However, more targeted studies localizing the origin of the compounds to either the host or 

symbionts are needed to determine causal effects. 

 Given the global decline in reef ecosystems, it is paramount to identify symbiotic partners 

that enhance coral resistance and resilience (van Oppen et al., 2015). Our work provides a 

framework to describe the metabolic impact of mixed symbiotic communities in eukaryotic hosts 
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and is complementary to metagenomic efforts. The integrative analysis of metabolite and 

microbial community data identifies symbiotic partners that alter metabolic pathways of corals. 

These findings emphasize the need to directly investigate the role of the diversity of microbial 

partners through targeted studies.   
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Figure 1.  Multivariate analysis indicates corals have distinct, but related microbial communities 

and metabolite composition. Non-metric multidimensional scaling (NMDS) and analysis of 

similarity (ANOSIM) separate coral species based on (A) Symbiodinium (filled circles), (B) 

bacterial/archaeal communities (filled triangles) and (C) metabolite profiles (open triangles, 

ANOSIM p-value and R annotated on each figure panel). (C) Hierarchical clustering results 

grouping samples with similar metabolite profiles are plotted as the overlay on the NMDS 

ordination.  NMDS ordinations and ANOSIM results for only Porites rus and P. lobata samples 

show statistical separation between species for both (F) Symbiodinium and (G) bacterial/archaeal 

communities, but not (H) metabolite composition. Procrustes rotations comparing metabolite 

profiles to both Symbiodinium (D, I) and bacterial/archaeal communities (E, J) for all species and 

only the subset of P. lobata and P. rus, indicate the datasets are congruent (p < 0.05).  

 

Figure 2. Significant Spearman rank correlation coefficients (FDR adjusted p < 0.05) between 

metabolite abundances and (A) Symbiodinium OTU subtypes or (B) bacterial/archaeal families. 

Metabolite annotations are based on specific peak matches to known compounds, or are 

categorized into metabolite classes (i.e., aliphatics, branch chain amino acids, carbohydrates, and 

lipids) based on peak location and patterning, the latter of which can result in multiple bins of the 

same general metabolite id. Only OTU/family-metabolite correlations with a Spearman rank 

value above 0.4 and below -0.4 are presented to facilitate data interpretation.   

BCAA = branch chain amino acids. 

 

Figure S1.  Coral species collected along a fringing reef in Mo‘orea, French Polynesia, including 

(A, B) Two un-identified species of Acropora, (C) Montipora aequituberculata, (D) Montipora 
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sp., (E) Pocillopora meandrina/verrucosa, (F) Pocillopora acuta, (G) Porites lobata, (H) Porites 

rus and (I) Porites irregularis. (J) Moorea, French Polynesia, the X marks the sampling location. 

 

Figure S2. Relative abundance of coral-associated (A) Symbiodinium and (B) bacterial/archaeal 

communities. Only taxa representing at least 3% of the microbial community structure are 

presented to facilitate data interpretation.  

  

Figure S3. Aligned and binned representative 
1
H-NMR metabolomic profiles from 9 coral 

species. BCAA = Branch chain amino acids 

Page 15 of 33

Wiley-Blackwell and Society for Applied Microbiology

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le

 1 

TITLE: Correspondence of coral holobiont metabolome with symbiotic bacteria, archaea and 

Symbiodinium communities  

AUTHORS: Emilia M. Sogin
1,*

; Hollie M. Putnam
1,†

 , Craig E. Nelson
2
, Paul Anderson

3
, Ruth 

D. Gates
1
  

AFFILIATIONS 

1- Hawaiʻi Institute of Marine Biology, University of Hawaiʻi at Mānoa, Kāneʻohe, HI, 

USA 

2- Center for Microbial Oceanography: Research and Education, Department of 

Oceanography and Sea Grant College Program, University of Hawaiʻi at Mānoa, 

Honolulu, HI, USA 

3- Department of Computer Science, College of Charleston, Charleston, NC, USA 

‡
CORRESPONDING AUTHOR 

Dr. Emilia M. Sogin  

MPI for Marine Microbiology 

Celsiusstr. 1 

D-28359 Bremen 

Germany 

Phone: +49 421 2028 - 823 

Fax: +49 421 2028 – 580 

Email: esogin@mpi-bremen.de 

                                                      
* Symbiosis Department, Max Planck Institute for Marine Microbiology, Bremen, DE 
† Biological Sciences, University of Rhode Island, Kingston, RI, USA 

 

Page 16 of 33

Wiley-Blackwell and Society for Applied Microbiology

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le

 2 

 

RUNNING TITLE:  The coral metabolome links to symbiont communities 

SUMMARY:  

Microbial symbiotic partners, such as those associated with scleractinian corals, mediate 

biochemical transformations that influence host performance and survival. While evidence 

suggests microbial community composition partly accounts for differences in coral physiology, 

how these symbionts affect metabolic pathways remains underexplored. We aimed to assess 

functional implications of variation among coral-associated microbial partners in hospite. To this 

end, we characterized and compared metabolomic profiles and microbial community 

composition from nine9 reef-building coral species. These data demonstrate metabolite profiles 

and microbial communities are species-specific and are correlated to one another. Using Porites 

spp. as a case study, we present evidence that the relative abundance of different sub-clades of 

Symbiodinium and bacterial/archaeal families are linked to positive and negative metabolomic 

signatures. Our data suggests that while some microbial partners benefit the union, others are 

more opportunistic and possibly parasitize harm thewith potential detriment to the  host. 

Consequently, coral partner choice likely influences cellular metabolic activities and, therefore, 

holobiont nutrition. 
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INTRODUCTION 

 Microbial symbiotic partners mediate biochemical transformations that contribute to host 

performance, altering individual survival and ecosystem function (McFall-Ngai et al., 2013). 

Reef-building corals partner with a diverse assemblage of bacterial, archaeal and eukaryotic 

organisms (i.e., microbiome) that comprise the coral holobiont and cycle organic molecules 

necessary for life in oligotrophic waters (Rohwer et al., 2002; Gates and Ainsworth 2011). Coral 

associated micro-algae from the dinoflagellate genus Symbiodinium help to sustain large organic 

biomasses on reefs through carbon production (Muscatine and Porter 1977), while coral-

associated bacterial and archaeal assemblages participate in sulfur (Raina et al., 2009) and 

nitrogen cycling (Rädecker et al., 2015). The breakdown of these symbiotic relationships (e.g., 

bleaching and disease), leads to mortality and drastic changes in reef structure (Hughes et al., 

2003). Because not all symbiotic partners contribute equally to holobiont performance (Stat et 

al., 2008), investigating how different microbes influence coral physiology is essential to 

understanding the resilience and resistance of reef ecosystems in a changing ocean environment. 

To this end, we sought to link microbial community composition to holobiont biochemical 

profiles using deep sequencing of marker genes and a holistic metabolomic approach.    

 

RESULTS AND DISCUSSION 

 We sampled the microbial community and metabolite composition from nine coral 

species within four genera from a single fringing reef in Mo‘orea, French Polynesia (Figure S1; 

supporting information provides full experimental methodology). We characterized both 

Symbiodinium and bacterial/archaeal communities from each sample by sequencing the internal 
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transcribed spacer 2 (ITS2) and the V3-V4 region of the 16s ribosomal RNA gene, respectively. 

Using custom bioinformatics pipelines (FileS1 and FileS4), our analysis identified 80 

Symbiodinium operational taxonomic units grouped to 97% similarity (OTUs; assigned to clades 

A, C, D and G) and 618 bacterial/archaeal families through database classification (Figure S2; 

Table S1); the majority of these families belong within the gamma-, alpha- and delta-

proteobacteria but with representatives spread across 130 classes (Figure S2B). In parallel, we 

assessed coral metabolite profiles from crude extracts using proton-nuclear magnetic resonance 

spectroscopy (
1
H-NMR) metabolomic techniques (Sogin et al., 2014). Our spectral binning 

approach identified 197 peaks from aligned NMR profiles, which were used in subsequent 

downstream analyses. We unambiguously identified 8 compounds through database and 

literature matching, and assigned the remaining signals to either carbohydrate, lipid, or aromatic 

metabolite classes based on spectral identity (Figure S3; Bross-Walch, et al, 2005).  

 Our sequencing and metabolomic profiling data allowed us to test for linkages between 

microbial community assemblages and metabolite composition. This novel in hospite approach 

provides direction for future efforts seeking to identify specific roles of uncultured complex 

mixtures of microbial communities in reef corals. Multivariate analysis of Symbiodinium and 

coral metabolite profiles grouped samples into coral species- and genera-specific clusters (Figure 

1A and 1C) while bacteria/archaea communities only sometimes separated by genera (Figure 

1B). These results confirm previous studies showing that closely related host taxa share similar 

symbiotic communities and biochemical profiles (Putnam et al., 2012; Rohwer et al.,  2002; 

Sogin et al., 2014). Using a procrustes rotation to statistically compare the multidimensional 

structure of each dataset, our study demonstrates congruency among coral Symbiodinium and 

bacterial communities with metabolomic profiles (Figure 1D, Figure 1E). Furthermore, these 
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results are robust to our choice of microbial phylogenetic binning. ANOSIM tests of 

bacterial/archaeal community structure differences among coral species (R=0.75, p=0.001) and 

Procrustes correspondence tests of multivariate congruency with metabolite composition 

(p=0.001) were consistent when bacterial/archaeal OTUs were constructed using a 97% sequence 

similarity criterion; we use family-level classifications herein as a conservative approach.  

 Corals host a diverse assemblage of symbiotic partners; therefore finding correlative 

relationships between metabolites and microbial members across multiple host species is not 

surprising. Considering different corals exhibit broadly different physiologies (e.g., Loya et al., 

2001), it is essential to isolate the influence of the host to identify the effect of microbial 

communities on holobiont metabolomic signatures. To this end, we applied a hierarchical 

clustering approach to the metabolite dataset and identified samples originating from Porites 

lobata and P. rus colonies as having similar metabolite profiles (Figure 1C, Figure 1H) but 

different symbiont communities (Figure 1F, Figure 1G). Repeated Procrustes rotation analyses 

using only the P. lobata and P. rus samples still detected congruency between microbial 

communities and metabolite composition (Figure 1H, Figure 1I). This suggests different 

microbial partners may play similar roles in holobiont nutrition and provide functional 

redundancy in the system, such that metabolic processes are retained (e.g., Yin et al., 2000). 

While our approach advances the field by providing a framework to investigate the roles of the 

symbiotic partners in a complex milieu, further metagenomic approaches will provide a detailed 

comparison between the functions of different microbes (Dinsdale et al., 2008). Repeated 

Procrustes rotation analyses using only the P. lobata and P. rus samples still detected 

congruency between microbial communities and metabolite composition (Figure 1H, Figure 1I). 

This and provide functional redundancy in the system, such that metabolic processes are retained 
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(e.g., Yin et al., 2000). Whileour approachadvances the field by ing in a complex milieu, further 

metagenomic approaches will provide a detailed comparison between the functions of different 

microbes (Dinsdale et al., 2008)Repeated Procrustes rotation analyses using only the P. lobata 

and P. rus samples still detected congruency between microbial communities and metabolite 

composition (Figure 1H, Figure 1I). Our findings lend weight to growing information on the 

metabolic role of mixed microbial communities, with various Symbiodinium types characterized 

by different chemical profiles (Klueter et al., 2015) and shifts in associated bacterial/archaeal 

communities altering the metabolic potential of the holobiont (Wegley et al., 2007).  

 Using this reduced dataset containing only Porites sp. with similar metabolite profiles, 

we also calculated spearman rank correlation coefficients between the abundance of individual 

NMR peaks and independently the relative abundances of both Symbiodinium and 

bacterial/archaeal symbionts. We observed significant correlations between coral-associated 

symbionts and metabolites (multiple comparisons corrected p < 0.05), further supporting the 

hypothesis that microbial communities alter holobiont metabolomic profiles (Figure 2). 

Hierarchical clustering on correlation patterns group microbial partners based on their 

association patterns with metabolite peaks, highlighting taxa that are positively and negatively 

associated with small compounds. While additional efforts are required to determine if these 

associations are benefiting or harming the holobiont, we can interpret these relationships in 

context of the current physiological understanding of coral microbial communities. Therefore, 

lyly thephysiological  u. Using these data, we explore the hypothesis that some symbionts 

positively contribute to, while others may parasitize act in an opportunistic or parasitic manner, 

with respect to act in an opportunistic or parasitic manner, with respect to, holobiont nutrition 

(Lesser et al., 2013).  

Page 21 of 33

Wiley-Blackwell and Society for Applied Microbiology

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le

 7 

 Clade C Symbiodinium fixes and translocates more organic carbon than other clades (Stat 

et al., 2008); our observation that OTU75 assigned to sub-clade C15 correlates positively with 

carbohydrates but negatively with lipids suggests this sub-type produces metabolically active 

carbohydrates not used in lipid metabolism (Figure 2A). Our analysis delineates variation in 

metabolite correlational patterns between closely related 97% Symbiodinium clusters (i.e., C15-

OTU75 and C15-OTU89), indicating even strain level variants are metabolically distinct. 

Closely related Symbiodinium types differentially influence host-bleaching susceptibility 

(Sampayo et al., 2008), variation in gene expression profiles (Parkinson et al., 2016) and 

holobiont metabolite composition. These findings may help to reconcile performance contrasts in 

corals, for example, variation in bleaching among individuals (Loya et al, 2001). 

 From our correlation analyses, we also identify clusters of bacterial/archaeal families that 

are either positively or negatively associated with NMR-metabolite peaks (Figure 2B).  We 

observe positive correlations between several unclassified cyanobacteria families and metabolite 

signals originating from nitrogen containing branched-chain amino acids and acetate, supporting 

the hypothesis that cyanobacteria produce nitrogen compounds to support coral nutrition the 

hypothesized beneficial role of cyanobacteria in nitrogen fixation (Lesser et al., 2004; Lesser et 

al., 2007).  We also observe positive associations with Vibrioaceae, a bacteria family commonly 

associated with elevated temperatures and coral stress, and a broad array of metabolites classes 

providing additional evidence that vibrio sp. strongly influences holobiont metabolism (Thurber 

et al. 2009). Additionally, we observe We also find 6 gamma-proteobacteria families are 

negatively associated with branched-chain amino acids and acetate, including 

Oceanospirillaceae and Colwelliaceae, families associated with coral disease (Thompson et al., 

2006) and opportunistic colonization following disturbance (Glasl et al., 2016). These data may 
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suggest bacteria families are producing or consuming metabolites, thereby altering Porites 

holobiont metabolism. Considering shifts in coral reef bacteria/archaea communities can alter 

ecosystem metabolic potential (Haas et al., 2016), our approach can support assessment efforts 

of reef health by determining metabolic activities of key coral-associated bacterial groups. 

However, more targeted studies localizing the origin of the compounds to either the host or 

symbionts are needed to determine causal effects. 

   

 Given the global decline in reef ecosystems, it is paramount to identify symbiotic partners 

that enhance coral resistance and resilience (van Oppen et al., 2015). Our work provides a 

framework to describe the metabolic impact of mixed symbiotic communities in eukaryotic hosts 

and is complementary to metagenomic efforts. The integrative analysis of metabolite and 

microbial community data identifies symbiotic partners that alter metabolic pathways of corals. 

These findings emphasize the need to directly investigate the role of the diversity of microbial 

partners through targeted studies.   
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FIGURE LEGENDS  

 

Figure 1.  Multivariate analysis indicates corals have distinct, but related microbial communities 

and metabolite composition. Non-metric multidimensional scaling (NMDS) and analysis of 

similarity (ANOSIM) separate coral species based on (A) Symbiodinium (filled circles), (B) 

bacterial/archaeal communities (filled triangles) and (C) metabolite profiles (open triangles, 

ANOSIM p-value and R annotated on each figure panel). (C) Hierarchical clustering results 

grouping samples with similar metabolite profiles are plotted as the overlay on the NMDS 

ordination.  NMDS ordinations and ANOSIM results for only Porites rus and P. lobata samples 

show statistical separation between species for both (F) Symbiodinium and (G) bacterial/archaeal 

communities, but not (H) metabolite composition. Procrustes rotations comparing metabolite 
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profiles to both Symbiodinium (D, I) and bacterial/archaeal communities (E, J) for all species and 

only the subset of P. lobata and P. rus, indicate the datasets are congruent (p < 0.05).  

 

Figure 2. Significant Spearman rank correlation coefficients (FDR adjusted p < 0.05) between 

metabolite abundances and (A) Symbiodinium OTU subtypes or (B) bacterial/archaeal families. 

Metabolite annotations are based on specific peak matches to known compounds, or are 

categorized into metabolite classes (i.e., aliphatics, branch chain amino acids, carbohydrates, and 

lipids) based on peak location and patterning, the latter of which can result in multiple bins of the 

same general metabolite id. Metabolite annotations are based on peak matches to databases or 

are placed categorized into metabolite categories classes (i.e., aliphatics, branch chain amino 

acids, carbohydrates, and lipids) based on peak location and patterns. Only OTU/family-

metabolite correlations with a Spearman rank value above 0.4 and below -0.4 are presented to 

facilitate data interpretation.   

BCAA = branch chain amino acids. 

 

Figure S1.  Coral species collected along a fringing reef in Mo‘orea, French Polynesia, including 

(A, B) Two un-identified species of Acropora, (C) Montipora aequituberculata, (D) Montipora 

sp., (E) Pocillopora meandrina/verrucosa, (F) Pocillopora acuta, (G) Porites lobata, (H) Porites 

rus and (I) Porites irregularis. (J) Moorea, French Polynesia, the X marks the sampling location. 

 

Figure S2. Relative abundance of coral-associated (A) Symbiodinium and (B) bacterial/archaeal 

communities. Only taxa representing at least 3% of the microbial community structure are 

presented to facilitate data interpretation.  
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Figure S3. Aligned and binned representative 1H-NMR metabolomic profiles from 9 coral 

species. BCAA = Branch chain amino acids 
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